On flattening rules in natural deduction calculus for intuitionistic propositional logic

On flattening rules in natural deduction calculus for intuitionistic propositional logic

Released Thursday, 18th April 2019
Good episode? Give it some love!
On flattening rules in natural deduction calculus for intuitionistic propositional logic

On flattening rules in natural deduction calculus for intuitionistic propositional logic

On flattening rules in natural deduction calculus for intuitionistic propositional logic

On flattening rules in natural deduction calculus for intuitionistic propositional logic

Thursday, 18th April 2019
Good episode? Give it some love!
Rate Episode
List

Grigory K. Olkhovikov (Ural Federal University Yekaterinburg) gives a talk at the MCMP Colloquium (25 April, 2013) titled "On flattening rules in natural deduction calculus for intuitionistic propositional logic". Abstract: Standard versions of natural deduction calculi consist of so called ‘flat’ rules that either discharge some formulas as their assumptions or discharge no assumptions at all. However, non-flat, or ‘higher-order’ rules discharging inferences rather than single formulas arise naturally within the realization of Lorenzen’s inversion principle in the framework of natural deduction. For the connectives which are taken as basic in the standard systems of propositional logic, these higher-order rules can be equivalently replaced with flat ones. Building on our joint work with Prof. P. Schroeder-Heister, we show that this is not the case with every connective of intuitionistic logic, the connective $c(A,B,C) = (A \to B)\vee C$ being our main counterexample. We also show that the dual question must be answered in the negative, too, that is to say, that existence of a system of flat elimination rules for a connective of intuitionistic logic does not guarantee existence of a system of flat introduction rules.

Show More
Rate
List

From The Podcast

Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists.The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws.Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.

Join Podchaser to...

  • Rate podcasts and episodes
  • Follow podcasts and creators
  • Create podcast and episode lists
  • & much more
Do you host or manage this podcast?
Claim and edit this page to your liking.
,