How Almost Everything in Space-time Theory Is Illuminated by Simple Particle Physics: The Neglected Case of Massive Scalar Gravity

How Almost Everything in Space-time Theory Is Illuminated by Simple Particle Physics: The Neglected Case of Massive Scalar Gravity

Released Thursday, 18th April 2019
Good episode? Give it some love!
How Almost Everything in Space-time Theory Is Illuminated by Simple Particle Physics: The Neglected Case of Massive Scalar Gravity

How Almost Everything in Space-time Theory Is Illuminated by Simple Particle Physics: The Neglected Case of Massive Scalar Gravity

How Almost Everything in Space-time Theory Is Illuminated by Simple Particle Physics: The Neglected Case of Massive Scalar Gravity

How Almost Everything in Space-time Theory Is Illuminated by Simple Particle Physics: The Neglected Case of Massive Scalar Gravity

Thursday, 18th April 2019
Good episode? Give it some love!
Rate Episode
List

J. Brian Pitts (Cambridge) gives a talk at the MCMP Colloquium (6 February, 2013) titled "How Almost Everything in Space-time Theory Is Illuminated by Simple Particle Physics: The Neglected Case of Massive Scalar Gravity". Abstract: Both particle physics from the 1920s-30s and the 1890s Seeliger-Neumann modification of Newtonian gravity suggest considering a “mass term,” an additional algebraic term in the gravitational potential. The “graviton mass” gives gravity a finite range. The smooth massless limit implies underdetermination. In 1914 Nordström generalized Newtonian gravity to fit Special Relativity. Why not do to Nordström what Seeliger and Neumann did to Newton? Einstein started in setting up a (faulty!) analogy for his cosmological constant Λ. Scalar gravities, though not empirically viable since the 1919 bending of light observations, provide a useful test bed for tensor theories like General Relativity. Massive scalar gravity, though not completed in a timely way, sheds philosophical light on most issues in contemporary and 20th century space-time theory. A mass term shrinks the symmetry group to that of Special Relativity and violates Einstein's principles (general covariance, general relativity, equivalence and Mach) in empirically small but conceptually large ways. Geometry is a poor guide to massive scalar gravities in comparison to detailed study of the field equation or Lagrangian. Matter sees a conformally flat metric because gravity distorts volumes while leaving the speed of light alone, but gravity sees the whole flat metric due to the mass term. Largely with Poincaré (pace Eddington), one can contemplate a “true” flat geometry differing from what material rods and clocks disclose. But questions about “true” geometry need no answer and tend to block inquiry. Presumptively one should expect analogous results for the tensor (massive spin 2) case modifying Einstein’s equations. A case to the contrary was made only in 1970-72: an apparently fatal dilemma involving either instability or empirical falsification appeared. But dark energy measurements since 1999 cast some doubt on General Relativity (massless spin 2) at long distances. Recent calculations (2000s, some from 2010) show that instability can be avoided and that empirical falsification likely can be as well, making massive spin 2 gravity a serious rival for GR. Particle physics can let philosophers proportion belief to evidence over time, rather than suffering from unconceived alternatives.

Show More
Rate
List

From The Podcast

Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists.The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws.Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.

Join Podchaser to...

  • Rate podcasts and episodes
  • Follow podcasts and creators
  • Create podcast and episode lists
  • & much more
Do you host or manage this podcast?
Claim and edit this page to your liking.
,